Skip to main content

Advertisement

Log in

Recent Progress in Automotive Gasoline Direct Injection Engine Technology

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

Gasoline direct injection (GDI) engines are currently the dominant powertrains for passenger cars. With the implementation of increasingly stringent fuel consumption and emission regulations worldwide, GDI engines are facing challenges owing to high particulate matter emissions and a tendency to knock, leading to a change in the research and design (R&D) issues compared with those in the twentieth century. This paper reviews the progress in research regarding GDI engine technologies over the past 20 years, focusing on combustion system configurations, and also highlights common issues in GDI R&D, including pre-ignition and deto-knock, soot formation and PM emissions, injector deposits and gasoline compression ignition (GCI). First, an overview of recent developments in the field as driven by regulations is provided, following which progress in injection and combustion systems is examined. Third, the review addresses the occurrence and mechanism of deto-knock and considers means of suppressing this phenomenon. The fourth section discusses soot formation mechanisms and particulate matter emission characteristics of GDI engines and describes the application of gasoline particulate filter (GPF) after-treatment. The subsequent section summarizes studies regarding injector deposit formation, as well as pioneering research into GCI combustion modes. Finally, a summary and future prospects for GDI engine technologies are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

BDC:

Bottom dead center

BMEP:

Brake mean effective pressure

BSFC:

Brake specific fuel consumption

BTE:

Brake thermal efficiency

CAFC:

Corporate average fuel consumption

CGPF:

Coated gasoline particulate filter

CTE:

Coefficient of thermal expansion

COV:

Coefficient of variance

CR:

Compression ratio

DI:

Direct injection

DISI:

Direct injection spark ignition

DPF:

Diesel particulate filter

EGR:

Exhaust gas recirculation

EIVC:

Early intake valve closing

GCI:

Gasoline compression ignition

GDCI:

Gasoline direct compression ignition

GDI:

Gasoline direct injection

GPF:

Gasoline particulate filter

HCCI:

Homogeneous charge compression ignition

ITE:

Indicated thermal efficiency

LIVC:

Late intake valve closing

LSPI:

Low-speed pre-ignition

MPCI:

Multiple premixed compression ignition

MPI:

Multiple point injection

NA:

Natural aspirated

NEDC:

New European driving cycle

PFI:

Port fuel injection

PM:

Particulate matter

PN:

Particle number

PPCI:

Partially premixed compression ignition

RCM:

Rapid compression machine

RON:

Research octane number

SMD:

Sauter mean diameter

SPCCI:

Spark-controlled compression ignition

TDC:

Top dead center

THC:

Total hydrocarbon

TWC:

Three way catalyst

VCR:

Variable compression ratio

VVT:

Variable valve timing

References

  1. International Energy Agency: Energy technology perspectives (2012). https://webstore.iea.org/energy-technology-perspectives-2012

  2. Zhao, F.Q., Lai, M.C., Harrington, D.L.: Automotive spark-ignited direct-injection gasoline engines. Progr. Energy Combus. Scie. 25(5), 437–562 (1999)

    Article  Google Scholar 

  3. Schöppe, D., et al.: Requirements for future gasoline DI systems and respective platform solutions. In: Internationales Wiener Motoren symposium (2011)

  4. Ouyang, M.G.: Energy saving and new energy vehicle technical roadmap. In: SAE-China Congress (2016)

  5. China: Limits and measurement methods for emissions from light-duty vehicles (CHINA 6) (2016)

  6. Mazda Corporation: Skyactiv Technology. http://www.mazda.com/en/innovation/technology/skyactiv/

  7. Cameron Aubernon: Japanese automakers form alliance to develop next-gen fuel-efficient engines. http://www.thetruthaboutcars.com/2014/05/japanese-automakers-form-alliance-to-develop-next-gen-fuel-efficient-engines/#more-826666.%202014

  8. Office of Energy Efficiency and Renewable Energy. Co-optimization of fuels and engines. https://www.energy.gov/eere/bioenergy/co-optimization-fuels-engines

  9. Sellnau, M., et al.: Second generation GDCI multi-cylinder engine for high fuel efficiency and US Tier 3 emissions. SAE Int. J. Engines 9(2), 1002–1020 (2016)

    Article  Google Scholar 

  10. Geiger, J., et al.: Direct injection gasoline engines-combustion and design. SAE Technical Paper 1999-01-0170 (1999)

  11. Park, C., et al.: Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine. Energy 41(1), 401–407 (2012)

    Article  Google Scholar 

  12. Yu, C.H., et al.: Development of Theta II 2.4 L GDI engine for high power and low emission. SAE Technical Paper 2009-01-1486 (2009)

  13. Tang, Y.H, et al.: The new ChangAn inline 4 cylinder 1.6 L gasoline naturally aspirated GDI engine. SAE Technical Paper 2018-01-1129 (2018)

  14. Eichhorn, A., et al.: Design of a boosted 2-cylinder SI-engine with gasoline direct injection to define the needs of future powertrains. SAE Technical Paper 2012-01-0832 (2012)

  15. Sporleder, J., Alt, M., Johnen, T.: The efficient gasoline engines in the new Opel Astra K. MTZ Worldw. 77(2), 28–33 (2016)

    Article  Google Scholar 

  16. Itabashi, S., et al.: New combustion and powertrain control technologies for fun-to-drive dynamic performance and better fuel economy. SAE Technical Paper 2017-01-0589 (2017)

  17. Sevik, J.: Influence of injector location on part-load performance characteristics of natural gas direct-injection in a spark ignition engine. SAE Int. J. Engines 9(2016–01–2364), 2262–2271 (2016)

    Google Scholar 

  18. Zahdeh, A.: Fundamental approach to investigate pre-ignition in boosted SI engines. SAE Int. J. Engines 4(2011–01–0340), 246–273 (2011)

    Article  Google Scholar 

  19. Shibata, M., et al.: New 1.0 L I3 turbocharged gasoline direct injection engine. SAE Technical Paper (2017)

  20. Vent, G., et al.: The new 2.0 l turbo engine from the Mercedes-Benz 4-cylinder engine family. In: 21st Aachen Colloquium Automobile and Engine Technology (2012)

  21. Skogsberg, M., Dahlander, P., Denbratt, I.: Spray shape and atomization quality of an outward-opening piezo gasoline DI injector. SAE Technical Paper 2007-01-1409 (2007)

  22. Ikoma, T., et al.: Development of V-6 3.5-liter engine adopting new direct injection system. SAE Technical Paper 2006-01-1259 (2006)

  23. Liu, H., et al.: Comparative study on alcohol-gasoline and gasoline-alcohol Dual-Fuel Spark Ignition (DFSI) combustion for engine particle number (PN) reduction. Fuel 159, 250–258 (2015)

    Article  Google Scholar 

  24. Wang, Z., et al.: Comparative study on alcohols-gasoline and gasoline-alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency. Energy 82, 395–405 (2015)

    Article  Google Scholar 

  25. Huang, Y.H., Hong, G., Huang, R.H.: Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI+ GPI) engine. Energy 111, 92–103 (2016)

    Article  Google Scholar 

  26. Zhuang, Y., Hong, G.: Effects of direct injection timing of ethanol fuel on engine knock and lean burn in a port injection gasoline engine. Fuel 135, 27–37 (2014)

    Article  Google Scholar 

  27. Wada, Y., et al.: Development of a new 1.5 L I4 turbocharged gasoline direct injection engine. SAE Technical Paper 2016-01-1020 (2016)

  28. Kojima, S., et al.: Development of a new 2L gasoline VC-Turbo engine with the world’s first variable compression ratio technology. SAE Technical Paper 2018-01-0371 (2018)

  29. Yamazaki, D., Mori, A., Murase, E.: The development of a new V6 3.5L turbocharged gasoline engine. SAE Technical Paper 2018-01-0366 (2018)

  30. Shinagawa, T., et al.: The new Toyota 1.2-liter ESTEC turbocharged direct injection gasoline engine. SAE Technical Paper 2015-01-1268 (2015)

  31. Lee, B., et al.: Development of high efficiency gasoline engine with thermal efficiency over 42%. SAE Technical Paper 2017-01-2229 (2017)

  32. Hwang, K., et al.: Development of new high-efficiency Kappa 1.6 L GDI engine. SAE Technical Paper 2016-01-0667 (2016)

  33. Wolfgang, S., et al.: The 2-Step VCR conrod system—modular system for high efficiency and reduced CO2. SAE Technical Paper 2017-01-0634 (2017)

  34. Asthana, S., et al.: A comparative study of recent advancements in the field of variable compression ratio engine technology. SAE Technical Paper 2016-01-0669 (2016)

  35. Gérard, D., et al.: Diesel VCR (variable compression ratio) engine development using multi-link mechanism. Society of Automotive Engineers of Japan (2006)

  36. Tomita, M., et al.: Compact and long-stroke multiple-link VCR engine mechanism. SAE Technical Paper 2007-01-3991 (2007)

  37. Gérard, D., et al.: HCCI combustion on a diesel VCR engine. SAE Technical Paper 2008-01-1187 (2008)

  38. Sugiyama, T., et al.: Technology for improving engine performance using variable mechanisms. SAE Technical Paper 2007-01-1290 (2007)

  39. Kleeberg, H., et al.: Increasing efficiency in gasoline powertrains with a two-stage variable compression ratio (VCR) system. SAE Technical Paper 2013-01-0288 (2013)

  40. Kadota, M.: Advanced control system of variable compression ratio (VCR) engine with dual piston mechanism. SAE Int. J. Engines 2(2009–01–1063), 1009–1018 (2009)

    Article  Google Scholar 

  41. Whitaker, P.: Development of the combustion system for a flexible fuel turbocharged direct injection engine. SAE Int. J. Engines 3(2010–01–0585), 326–354 (2010)

    Article  Google Scholar 

  42. Matsuo, S., et al.: The new Toyota inline 4 cylinder 1.8 L ESTEC 2ZR-FXE gasoline engine for hybrid car. SAE Technical Paper 2016-01-0684 (2016)

  43. Matsumura, E., et al.: Development of DISI engine utilizing a fan-shaped spray jet. SAE Technical Paper 2013-01-0260 (2013)

  44. Dahlander, P., Iemmolo, D., Tong, Y.: Measurements of time-resolved mass injection rates for a multi-hole and an outward opening piezo GDI injector. SAE Technical Paper 2015-01-0929 (2015)

  45. Dahlander, P., Hemdal, S.: High-speed photography of stratified combustion in an optical GDI engine for different triple injection strategies. SAE Technical Paper 2015-01-0745 (2015)

  46. Stiehl, R., et al.: In-cylinder flow and fuel spray interactions in a stratified spray-guided gasoline engine investigated by high-speed laser imaging techniques. Flow Turbul. Combust. 91(3), 431–450 (2013)

    Article  MathSciNet  Google Scholar 

  47. Bock, N., et al.: Solid particle number and mass emissions from lean and stoichiometric gasoline direct injection engine operation. SAE Technical Paper 2018-01-0359 (2018)

  48. Matthias, N., Wallner, T., Scarcelli, R.: Analysis of cyclic variability and the effect of dilute combustion in a gasoline direct injection engine. SAE Int. J. Engines 7(2), 633–641 (2014)

    Article  Google Scholar 

  49. Iida, N.: Research and development of super-lean burn for high efficiency SI engine. In: The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (2017)

  50. Parks, J.E., et al.: Filter-based control of particulate matter from a lean gasoline direct injection engine. SAE Technical Paper 2016-01-0937 (2016)

  51. Toulson, E., Watson, H.C., Attard, W.P.: The effects of hot and cool EGR with hydrogen assisted jet ignition. SAE Technical Paper 2007-01-3627 (2007)

  52. Wei, H., et al.: Gasoline engine exhaust gas recirculation—a review. Appl. Energy 99, 534–544 (2012)

    Article  Google Scholar 

  53. Bogarra, M., et al.: Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming. Appl. Energy 180, 245–255 (2016)

    Article  Google Scholar 

  54. Abd-Alla, G.H.: Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers. Manag. 43(8), 1027–1042 (2002)

    Article  Google Scholar 

  55. Xie, F.X., et al.: Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine. Energy Convers. Manag. 142, 69–81 (2017)

    Article  Google Scholar 

  56. Zhao, J.X.: Research and application of over-expansion cycle (Atkinson and Miller) engines—a review. Appl. Energy 185, 300–319 (2017)

    Article  Google Scholar 

  57. Miklanek, L., et al.: Study of unconventional cycles (Atkinson and Miller) with mixture heating as a means for the fuel economy improvement of a throttled SI engine at part load. SAE Int. J. Engines 5(4), 1624–1636 (2012)

    Article  Google Scholar 

  58. Ribau, J., et al.: Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles. Energy Convers. Manag. 58, 120–133 (2012)

    Article  Google Scholar 

  59. Ribeiro, B., Martins, J.: Direct comparison of an engine working under Otto, Miller and Diesel cycles: thermodynamic analysis and real engine performance. SAE Technical Paper 2007-01-0261 (2007)

  60. Tavakoli, S., et al.: Miller cycle application to improve lean burn gas engine performance. Energy 109, 190–200 (2016)

    Article  Google Scholar 

  61. Zhao, J.X., et al.: Design and optimization of an Atkinson cycle engine with the artificial neural network method. Appl. Energy 92, 492–502 (2012)

    Article  Google Scholar 

  62. Luo, Q.H., Sun, B.G.: Effect of the Miller cycle on the performance of turbocharged hydrogen internal combustion engines. Energy Convers. Manag. 123, 209–217 (2016)

    Article  Google Scholar 

  63. Kawamoto, N., et al.: Development of new 1.8-liter engine for hybrid vehicles. SAE Technical Paper 2009-01-1061 (2009)

  64. Abe, S.: Development of the hybrid vehicle and its future expectation. SAE Technical Paper 2000-01-C042 (2000)

  65. Li, T., et al.: The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. Energy Convers. Manag. 79, 59–65 (2014)

    Article  Google Scholar 

  66. Martins, M.E., Lanzanova, T.D.: Full-load Miller cycle with ethanol and EGR: Potential benefits and challenges. Appl. Therm. Eng. 90, 274–285 (2015)

    Article  Google Scholar 

  67. Kapus, P., Neubauer, M., Fraidl, G.: Die Zukunft des stöchiometrischen Ottomotors–minimaler Verbrauch und hohe Leistung. MTZ-Motortechnische Zeitschrift. 75(11), 40–45 (2014)

    Article  Google Scholar 

  68. Fraidl, G., Kapus, P., Vidmar., K.: The gasoline engine and RDE challenges and prospects. Internationales Stuttgarter Symposium. Springer, Wiesbaden, pp. 257–283 (2016)

  69. Wang, Z., Liu, H., Reitz, R.D.: Knocking combustion in spark-ignition engines. Progr. Energy Combust. Sci. 61, 78–112 (2017)

    Article  Google Scholar 

  70. Wang, Z.: Development of GDI engine for passenger cars—annual report of 863 project (2006AA110106) (2006)

  71. Dahnz, C., Spicher, U.: Irregular combustion in supercharged spark ignition engines—pre-ignition and other phenomena. Int. J. Engine Res. 11(6), 485–498 (2010)

    Article  Google Scholar 

  72. Wang, Z., et al.: Analysis of pre-ignition to super-knock: hotspot-induced deflagration to detonation. Fuel 144, 222–227 (2015)

    Article  Google Scholar 

  73. Amann, M., Alger, T.: Lubricant reactivity effects on gasoline spark ignition engine knock. SAE Int. J. Fuels Lubr. 5, 760–771 (2012)

    Article  Google Scholar 

  74. Qi, Y.L., et al.: The effect of oil intrusion on super knock in gasoline engine. SAE Technical Paper 2014-01-1224 (2014)

  75. Zaccardi, J.M., Escudié, D.: Overview of the main mechanisms triggering low-speed pre-ignition in spark-ignition engines. Int. J. Engine Res. 16(2), 152–165 (2014)

    Article  Google Scholar 

  76. Kassai, M., et al.: Mechanism analysis on LSPI occurrence in boosted S. I. engines. SAE Technical Paper 2015-01-1867 (2015)

  77. Lauer, T., et al.: A comprehensive simulation approach to irregular combustion. SAE Technical Paper 2014-01-1214 (2014)

  78. Kuboyama, T., Moriyoshi, Y., Morikawa, K.: Visualization and analysis of LSPI mechanism caused by oil droplet, particle and deposit in highly boosted SI combustion in low speed range. SAE Int. J. Engines 8(2), 529–537 (2015)

    Article  Google Scholar 

  79. Magar, M., et al.: Experimental studies on the occurrence of low-speed pre-ignition in turbocharged GDI engines. SAE Int. J. Engines 8(2), 495–504 (2015)

    Article  Google Scholar 

  80. Wang, Z., et al.: Experimental study on pre-ignition and super-knock in gasoline engine combustion with carbon particle at elevated temperatures and pressures. SAE Technical Paper 2015-01-0752 (2015)

  81. Kalghatgi, G.T., Bradley, D.: Pre-ignition and super-knock in turbo-charged spark-ignition engines. Int. J. Engine Res. 13(4), 399–414 (2012)

    Article  Google Scholar 

  82. Welling, O., et al.: Impact of lubricant composition on low-speed pre-ignition. SAE Technical Paper 2014-01-1213 (2014)

  83. Takeuchi, K., et al.: Investigation of engine oil effect on abnormal combustion in turbocharged direct injection—spark ignition engines. SAE Int. J. Fuels Lubr. 5(3), 1017–1024 (2012)

    Article  Google Scholar 

  84. Andrews, A., et al.: Investigation of engine oil base stock effects on low speed pre-ignition in a turbocharged direct injection SI engine. SAE Int. J. Fuels Lubr. 9(2), 400–407 (2016)

    Article  Google Scholar 

  85. Morikawa, K., et al.: Investigation and improvement of LSPI phenomena and study of combustion strategy in highly boosted SI combustion in low speed range. SAE Technical Paper 2015-01-0756 (2015)

  86. Kassai, M., et al.: An investigation on the ignition characteristics of lubricant component containing fuel droplets using rapid compression and expansion machine. SAE Int. J. Fuels Lubr. 9(3), 469–480 (2016)

    Article  Google Scholar 

  87. Long, Y., et al.: Effect of oil and gasoline properties on pre-ignition and super-knock in a thermal research engine (TRE) and an optical rapid compression machine (RCM). SAE Technical Paper 2016-01-0720 (2016)

  88. Hirano, S., et al.: Investigation of engine oil effect on abnormal combustion in turbocharged direct injection—spark ignition engines (Part 2). SAE Technical Paper 2013-01-2569 (2013)

  89. Fujimoto, K., et al.: Engine oil development for preventing pre-ignition in turbocharged gasoline engine. SAE Int. J. Fuels Lubr. 7(3), 869–874 (2014)

    Article  Google Scholar 

  90. Miura, K., et al.: Influence of Ca-, Mg- and Na-based engine oil additives on abnormal combustion in a spark-ignition engine. SAE Int. J. Engines 9(1), 452–457 (2015)

    Google Scholar 

  91. Fletcher, K.A., et al.: Engine oil additive impacts on low speed pre-ignition. SAE Int. J. Fuels Lubr. 9(3), 612–620 (2016)

    Article  Google Scholar 

  92. Ritchie, A., Boese, D., Young, A.W.: Controlling low-speed pre-ignition in modern automotive equipment Part 3: identification of key additive component types and other lubricant composition effects on low-speed pre-ignition. SAE Int. J. Engines 9(2), 832–840 (2016)

    Article  Google Scholar 

  93. Kocsis, M.C., Briggs, T., Anderson, G.: The impact of lubricant volatility, viscosity and detergent chemistry on low speed pre-ignition behavior. SAE Int. J. Engines 10(3), 1019–1035 (2017)

    Article  Google Scholar 

  94. Kassai, M., et al.: Research on the effect of lubricant oil and fuel properties on LSPI occurrence in boosted S.I. engines. SAE Technical Paper 2016-01-2292 (2016)

  95. Hayakawa, N., et al.: A Study on the effect of Zn- and Mo-based engine oil additives on abnormal SI engine combustion using in-cylinder combustion visualization. SAE Int. J. Engines 8(1), 214–220 (2014)

    Article  Google Scholar 

  96. Amann, M., Mehta, D., Alger, T.: Engine operating condition and gasoline fuel composition effects on low-speed pre-ignition in high-performance spark ignited gasoline engines. SAE Int. J. Engines 4(1), 274–285 (2011)

    Article  Google Scholar 

  97. Zahdeh, A., et al.: Fundamental approach to investigate pre-ignition in boosted SI engines. SAE Int. J. Engines 4(1), 246–273 (2011)

    Article  Google Scholar 

  98. He, Y., et al.: Comparison of stochastic pre-ignition behaviors on a turbocharged gasoline engine with various fuels and lubricants. SAE Technical Paper 2016-01-2291 (2016)

  99. Mansfield, A.B., Chapman, E., Briscoe, K.: Impact of fuel octane rating and aromatic content on stochastic pre-ignition. SAE Technical Paper 2016-01-0721 (2016)

  100. Chapman, E.: Fuel octane and volatility effects on the stochastic pre-ignition behavior of a 2.0L gasoline turbocharged DI engine. SAE Int. J. Fuels Lubr. 7(2), 379–389 (2014)

    Article  Google Scholar 

  101. Palaveev, S., et al.: Premature flame initiation in a turbocharged DISI engine—numerical and experimental investigations. SAE Int. J. Engines 6(1), 54–66 (2013)

    Article  Google Scholar 

  102. Mayer, M., et al.: Influence of different fuel properties and gasoline—ethanol blends on low-speed pre-ignition in turbocharged direct injection spark ignition engines. SAE Int. J. Engines 9(2), 841–848 (2016)

    Article  Google Scholar 

  103. Wang, Z., et al.: Investigation on pre-ignition and super-knock in highly boosted gasoline direct injection engines, SAE Technical Paper 2014-01-1212 (2014)

  104. Inoue, T., Inoue, Y., and Ishikawa, M.: Abnormal combustion in a highly boosted SI engine—the occurrence of super knock. SAE Technical Paper 2012-01-1141 (2012)

  105. Amann, M., Alger, T., Mehta, D.: The effect of EGR on low-speed pre-ignition in boosted SI engines. SAE Int. J. Engines 4(1), 235–245 (2011)

    Article  Google Scholar 

  106. Luo, X., et al.: An experimental investigation on low speed pre-Ignition in a highly boosted gasoline direct injection engine. SAE Int. J. Engines 8(2), 520–528 (2015)

    Article  Google Scholar 

  107. Glassman, I.: Soot formation in combustion processes. Symp. (Int.) Combust. 22, 295–311 (1989)

    Article  Google Scholar 

  108. Tree, D.R., Svensson, K.I.: Soot processes in compression ignition engines. Progr. Energy Combust. Sci. 33, 272–309 (2007)

    Article  Google Scholar 

  109. Velji, A., et al.: Investigations of the formation and oxidation of soot inside a direct injection spark ignition engine using advanced laser-techniques. SAE Technical Paper 2010-01-0352 (2010)

  110. Lucchini, T., et al.: Development and application of a computational fluid dynamics methodology to predict fuel–air mixing and sources of soot formation in gasoline direct injection engines. Int. J. Engine Res. 15, 581–596 (2014)

    Article  Google Scholar 

  111. Stojkovic, B.D.: High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine. Proc. Combust. Inst. 30 II, 2657–2665 (2005)

    Article  Google Scholar 

  112. Berndorfer, A., et al.: Diffusion combustion phenomena in GDI engines caused by injection process. SAE Technical Paper 2013-01-0261 (2013)

  113. Hoffmann, G., et al.: Fuel system pressure increase for enhanced performance of GDI multi-hole injection systems. SAE Technique Paper. 2014-01-1209 (2014)

  114. Lee, S., Park, S.: Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30 MPa. Int. J. Heat Fluid Flow 45, 14–22 (2014)

    Article  Google Scholar 

  115. Sogawa, Y., et al.: Nano particle emission evaluation of state of the art diesel aftertreatment technologies (DPF, urea-SCR and DOC), gasoline combustion systems (Lean Burn/Stoichiometric DISI and MPI) and fuel qualities effects (EtOH, ETBE, FAME, Aromatics and Distillation). SAE Technical Paper 2007-01-4083 (2007)

  116. Zheng, R.: Research on the Characteristics of Primary Particulate Emissions and secondary Particle Generation Potential of Gasoline Engine. Tsinghua University, Beijing (2015)

    Google Scholar 

  117. Price, P., et al.: Cold start particulate emissions from a second generation DI gasoline engine, SAE Technical Paper 2007-01-1931 (2007)

  118. AECC technical summary: Gasoline particulate filter (GPF), How can the GPF cut emissions of ultrafine particles from gasoline engines (2017)

  119. Saito, C., et al.: New particulate filter concept to reduce particle number emissions. SAE Technical Paper 2011-01-0814 (2011)

  120. Kern, B., Spiess, S., Richter, J.M.: Comprehensive gasoline exhaust gas aftertreatment, an effective measure to minimize the contribution of modern direct injection engines to fine dust and soot emissions. SAE Technical Paper 2014-01-1513 (2014)

  121. Inoda, S., et al.: Development of new coating technology optimized for each function of coated GPF. SAE Technical Paper 2017-01-0929 (2017)

  122. Richter, J.M.: Application of catalyzed gasoline particulate filters to GDI vehicles. SAE Int. J. Engines 5(2012–01–1244), 1361–1370 (2012)

    Article  Google Scholar 

  123. Opitz, B., et al.: An experimental and simulation study on the cold start behavior of particulate filters with wall integrated three way catalyst. Appl. Catal. B Environ. 144, 203–215 (2014)

    Article  Google Scholar 

  124. Seo, J.M., Park, W.S., Lee, M.J.: The best choice of gasoline/diesel particulate filter to meet future particulate matter regulation. SAE Technical Paper 2012-01-1255 (2012)

  125. Boger, T., et al.: Oxidation of soot (Printex® U) in particulate filters operated on gasoline engines. Emiss. Control Sci. Technol. 1(1), 49–63 (2015)

    Article  Google Scholar 

  126. Shimoda, T., et al.: Potential of a low pressure drop filter concept for direct injection gasoline engines to reduce particulate number emission. SAE Technical Paper 2012-01-1241 (2012)

  127. Ito, Y., et al.: Next generation of ceramic wall flow gasoline particulate filter with integrated three way catalyst. SAE Technical Paper 2015-01-1073 (2015)

  128. Johnson, T., Joshi, A.: Review of vehicle engine efficiency and emissions. SAE Technical Paper 2017-01-0907 (2017)

  129. Van Nieuwstadt, M., Ulrey, J.: Control strategies for gasoline particulate filters. SAE Technical Paper 2017-01-0931 (2017)

  130. Xu, H.M., et al.: Fuel injector deposits in direct-injection spark-ignition engines. Progr. Energy Combust. Sci. 50, 63–80 (2015)

    Article  Google Scholar 

  131. Dearn, K.: An investigation into the characteristics of DISI injector deposits using advanced analytical methods. SAE Int. J. Fuels Lubr. 7(2014–01–2722), 771–782 (2014)

    Article  Google Scholar 

  132. Song, H.Y., et al.: The effects of deposits on spray behaviors of a gasoline direct injector. Fuel 180, 506–513 (2016)

    Article  Google Scholar 

  133. Jiang, C.Z., et al.: Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine. Appl. Energy 203, 390–402 (2017)

    Article  Google Scholar 

  134. Henkel, S., et al.: Injector fouling and its impact on engine emissions and spray characteristics in gasoline direct injection engines. SAE Int. J. Fuels Lubr. 10(2), 287–295 (2017)

    Article  Google Scholar 

  135. Wang, Z.M., et al.: Influence of deposit on spray behavior under flash boiling condition with the application of closely coupled split injection strategy. Fuel 190, 67–78 (2017)

    Article  Google Scholar 

  136. Joedicke, A., et al.: Understanding the effect of DISI injector deposits on vehicle performance. SAE Technical Paper 2012-01-0391 (2012)

  137. Wen, Y., et al.: The impact of injector deposits on spray and particulate emission of advanced gasoline direct injection vehicle. SAE Technical Paper 2016-01-2284 (2016)

  138. Zhang, W.B, et al.: Effect of fuel detergent on injector deposit formation and engine emissions in a gasoline direct injection (GDI) engine. SAE Technical Paper 2017-01-2247 (2017)

  139. Moon, S., et al.: The effects of injector temperature on spray and combustion characteristics in a single cylinder DISI engine. SAE Technical Paper 2005-01-0101 (2005)

  140. Lindström, M., Ångström, H.E.: A study of hole properties in diesel fuel injection nozzles and its influence on smoke emissions. In: Proceedings Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Conferences and Symposia, Valencia, Spain (2008)

  141. Imoehl, W.: A DOE approach to engine deposit testing used to optimize the design of a gasoline direct injector seat and orifice. SAE Int. J. Fuels Lubr. 5(2012–01–1642), 1078–1095 (2012)

    Article  Google Scholar 

  142. Bacho, P.S.V., et al.: Engine test for accelerated fuel deposit formation on injectors used in gasoline direct injection engines. SAE Technical Paper 2009-01-1495 (2009)

  143. Onishi, S., et al.: Active thermo-atmosphere combustion (ATAC)—a new combustion process for internal combustion engines. SAE Technical paper 790501 (1979)

  144. Yao, M.F., Zheng, Z.L., Liu, H.F.: Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progr. Energy Combust. Sci. 35(5), 398–437 (2009)

    Article  Google Scholar 

  145. Kalghatgi, G.T., Risberg, P., Ångström, H.E.: Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Technical Paper 2006-01-3385 (2006)

  146. Manente, V., et al.: An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion. SAE Technical Paper 2010-01-2198 (2010)

  147. Yang, H.Q., et al.: Fuel octane effects on gasoline multiple premixed compression ignition (MPCI) mode. Fuel 103, 373–379 (2013)

    Article  Google Scholar 

  148. Wang, B.Y, et al.: Numerical resolution of multiple premixed compression ignition (MPCI) mode and partially premixed compression ignition (PPCI) mode for low octane gasoline. SAE Technical Paper 2013-01-2631 (2013)

  149. Kalghatgi, G.T.: Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc. Combust. Inst. 35(1), 101–115 (2015)

    Article  Google Scholar 

  150. Wang, J.X., et al.: Combustion and emission characteristics of direct injection compression ignition engine fueled with wide distillation fuel (WDF). Energy Proc. 75, 2379–2387 (2015)

    Article  Google Scholar 

  151. Zhang, F., et al.: Experimental investigation of different blends of diesel and gasoline (Dieseline) in a CI engine. SAE Int. J. Engines 7(4), 1920–1930 (2014)

    Article  Google Scholar 

  152. Zhang, F., et al.: Investigation into light duty dieseline fuelled partially-premixed compression ignition engine. SAE Int. J. Engines 4(1), 2124–2134 (2011)

    Article  Google Scholar 

  153. Algunaibet, I.M., et al.: Flammability and volatility attributes of binary mixtures of some practical multi-component fuels. Fuel 172, 273–283 (2016)

    Article  Google Scholar 

  154. Chang, J., et al.: Octane-on-demand as an enabler for highly efficient spark ignition engines and greenhouse gas emissions improvement. SAE Technical Paper 2015-01-1264 (2015)

  155. Sellnau, M., et al.: Advancement of GDCI engine technology for US 2025 CAFE and Tier 3 emissions. SAE Technical Paper 2018-01-0901 (2018)

  156. Automotive Engineering: March 2018, SAE International (2018)

  157. Mazda Corporation. SKYACTIV-X NEXT-GENERATION GASOLINE ENGINE. https://insidemazda.mazdausa.com/press-release/mazda-next-generation-technology-press-information/

  158. U.S. Department of Energy. NEXTCAR. https://arpa-e.energy.gov/?q=programs/nextcar

  159. Zhou, Q., et al.: Cyber-physical energy-saving control for hybrid aircraft-towing tractor based on online swarm intelligent programming. In: IEEE Transactions on Industrial Informatics (2017)

  160. Ma, H., et al.: Computational intelligence nonmodel-based calibration approach for internal combustion engines. J. Dyn. Syst. Meas. Control 140(4), 041002 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the China National Natural Science Foundation Project “Formation and Evolution of PM from GDI Engines: From Primary Particles to Secondary Aerosols” (Grant No. 51636003), and the National Key R&D Plan Project “Integration Technology of PM Capture and Clean Emissions for GDI Vehicles” (Grant No. 2017YFC02110004). The authors also wish to thank their colleagues Prof. Jianxin Wang and Prof. Zhi Wang as well as Ph.D. students Shuai Liang, Zhou Zhang, Wenbin Zhang, Zexian Guo and Hengjie Guo for their contributions to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijin Shuai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, S., Ma, X., Li, Y. et al. Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automot. Innov. 1, 95–113 (2018). https://doi.org/10.1007/s42154-018-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-018-0020-1

Keywords

Navigation